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Precision experiments, such as the search for a deuteron electric dipole moment using storage rings like
COSY, demand for an understanding of the spin dynamics with unprecedented accuracy. In such an
enterprise, numerical predictions play a crucial role for the development and later application of spin-
tracking algorithms. Various measurement concepts involving polarization effects induced by an rf Wien
filter and static solenoids in COSYare discussed. The matrix formalism, applied here, deals solelywith spin
rotations on the closed orbit of the machine, and is intended to provide numerical guidance for the
development of beam and spin-tracking codes for rings that employ realistic descriptions of the electric and
magnetic bending and focusing elements, solenoids, etc., and a realistically modeled rf Wien filter.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is not
capable to account for the apparent matter-antimatter
asymmetry of the Universe. Physics beyond the SM is
required and it is either probed by employing high
energies (e.g., at LHC), or by striving for ultimate
precision and sensitivity (e.g., in the search for electric
dipole moments). Permanent electric dipole moments
(EDMs) of particles violate both time-reversal ðT Þ and
parity ðPÞ invariance, and are via the CPT theorem also
CP violating. Finding an EDM would be a strong
indication for physics beyond the SM, and pushing upper
limits further provides crucial tests for any corresponding
theoretical model, e.g., SUSY.
Up to now, EDM searches mostly focused on neutral

systems (neutrons, atoms, and molecules). Storage rings,
however, offer the possibility to measure EDMs of
charged particles by observing the influence of the
EDM on the spin motion in the ring. These direct searches
of e.g., proton and deuteron EDMs bear the potential to
reach sensitivities beyond 10−29e cm. Since the cooler
synchrotron COSY1 at the Forschungszentrum Jülich

provides polarized protons and deuterons up to momenta
of 3.7 GeV=c, it constitutes an ideal testing ground and a
starting point for such an experimental program.
The investigations presented here, carried out in the

framework of the JEDI collaboration,2 are relevant for the
preparation of the deuteron EDM measurement [3]. A
radio-frequency (rf) Wien filter (WF) [4–6] makes it
possible to carry out EDM measurements in a conventional
magnetic machine like COSY. The idea is to look for an
EDM-driven resonant rotation of the deuteron spins from
the horizontal to the vertical direction and vice versa,
generated by the rf Wien filter at the spin precession
frequency [7,8].
The search for EDMs of protons, deuterons, and heavier

nuclei using storage rings [2,9,10] is part of an extensive
world-wide effort to push further the frontiers of preci-
sion spin dynamics of polarized particles in storage
rings. In this context, the JEDI results prompted the
formation of the new Charged Particle Electric Dipole
Moment (CPEDM) collaboration,3 which aims at the
development of a purely electric prototype storage ring,
with drastically enhanced sensitivities to the EDM of
protons and deuterons, compared to what is presently
feasible at COSY [3,11].
Precision experiments, such as the EDM searches,

demand for an understanding of the spin dynamics with
unprecedented accuracy, keeping in mind that the ultimate

*f.rathmann@fz-juelich.de
1The synchrotron and storage ring COSYaccelerates and stores

unpolarized and polarized proton or deuteron beams in the
momentum range of 0.3 to 3.65 GeV=c [1].
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2The proposals of the JEDI collaboration (Jülich Electric
Dipole moment Investigations) are available from [2].

3The website of the Charged Particle Electric Dipole Moment
Collaboration is available via http://pbc. web.cern.ch/edm/edm-
default.htm.
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aim is to measure EDMs with a sensitivity up to 15 orders
in magnitude better than the magnetic dipole moment
(MDM) of the stored particles.
The description of the physics of the applied approach,

called rf Wien filter mapping, is discussed further in a
forthcoming separate publication. The theoretical under-
standing of the method and its experimental exploitation
are prerequisites for the planned EDM experiments at
COSY [2], and will also have an impact on the design
of future dedicated EDM storage rings [11].
This paper discusses various polarization effects that are

induced by the rf Wien filter and static solenoids in the ring.
The approach taken here strongly simplifies the machine
lattice, and deals solely with spin rotations on the closed
orbit [12,13], described by the SOð3Þ formalism. One aim
of the work is to obtain a basic understanding about the
interplay of spin rotations in a magnetic ring equipped with
an rf Wien filter and solenoid magnets, under the simplify-
ing assumption mentioned above. In an ideal machine with
perfect alignment of the magnetic elements, the spin
rotations on the closed orbit are generated primarily by
the dipole magnets, therefore, for the time being, spin
rotations in the quadrupole magnets are not considered.
As we shall demonstrate below, even with an idealized

ring, the parametric rf resonance-driven spin rotations
reveal quite a reach pattern of spin dynamics. Our results
set the background for more realistic spin tracking calcu-
lations, based on recent geodetic surveys of COSY that
make available position offsets, roll, and inclination
parameters for the quadrupole and dipole magnets. The
treatment of the spin transport through these individually
misaligned magnetic elements, can, however, be readily
incorporated in the applied matrix formalism. Besides that,
the spin dynamics simulations carried out in the framework
of the present paper will serve as a valuable cross-check of
the analytic approximate treatment of the parametric spin
resonance, based on the Bogolyubov-Krylov-Mitropolsky
averaging technique [14].
The JEDI collaboration is presently implementing a

beam-based alignment scheme at COSY, which aims at
providing optimized beam-transfer properties of the quad-
rupole and dipole magnets in the ring, intending to make
the beam orbit as planar as possible [15]. Once this is
accomplished, the spin dynamics in the ring will be largely
governed by the misaligned dipoles alone. Thus effectively,
the approach described here will appropriately describe an
EDM experiment using an rf Wien filter in a beam-based
aligned ring.
The paper is organized as follows. In Sec. II, the effect of

an EDM on the spin evolution in a ring is discussed in terms
of the Thomas-BMT equation [12]. The inclusion of an rf
Wien filter in an otherwise ideal ring is treated in Sec. III,
while the polarization evolution with an rf Wien filter
and additional solenoids is discussed in Sec. IV. The
main findings are summarized in the conclusions in
Sec. V. A brief outlook into additional aspects planned

to be investigated using the simulation approach taken here
in the near future is also given.

II. SPIN ROTATIONS IN THE RING

A. Thomas-BMT equation

Below, the basic formalism to describe the spin evolution
in electric and magnetic fields is briefly reiterated. The
generalized form of the Thomas-BMT equation describes
the spin motion of a particle with spin S⃗ in an arbitrary
electric (E⃗) and magnetic field (B⃗). Including EDMs (in SI
units), it reads [16]

dS⃗
dt

¼ ðΩ⃗MDM þ Ω⃗EDMÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Ω⃗tot

× S⃗; ð1Þ

where

Ω⃗MDM ¼ −
q
m

��
Gþ 1

γ

�
B⃗ −

Gγ
γ þ 1

ðβ⃗ · B⃗Þβ⃗

−
�
Gþ 1

γ þ 1

�
β⃗ × E⃗
c

�
;

Ω⃗EDM ¼ −
q
mc

ηEDM
2

�
E⃗ −

γ

γ þ 1
ðβ⃗ · E⃗Þβ⃗ þ cβ⃗ × B⃗

�
: ð2Þ

Here m, γ, and β⃗ are the mass, Lorentz factor, and the
velocity of a particle in units of the speed of light c in
vacuum. S⃗ (in units of ℏ) is given in the particle rest frame,
and the fields E⃗ and B⃗ are in the laboratory system. The
magnetic dipole moment μ⃗ (MDM) and the electric dipole
moment d⃗ (EDM) are defined via the dimensionless Landé-
factor g and ηEDM

μ⃗ ¼ g
q
2m

S⃗; and d⃗ ¼ ηEDM
q

2mc
S⃗: ð3Þ

The magnetic anomaly is given by

G ¼ g − 2

2
: ð4Þ

B. EDM tilt angle ξ from the Thomas-BMT equation

In an ideal machine without unwanted magnetic
fields, the axis about which the particle spins precess is
given by the purely vertical magnetic field B⃗¼B⃗⊥¼B⊥ ·e⃗y.
Equating the COSY orbital angular velocity Ωrev ¼ 2πfrev
and the relativistic cyclotron angular velocity

Ω⃗rev¼

0
B@

0

2π ·frev
0

1
CA¼ Ω⃗cyc ¼−

q
γm

�
B⊥−

β⃗× E⃗
β2c

�
; ð5Þ

yields, for E⃗ ¼ 0 with the parameters given in Table I, a
vertical magnetic field of
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B⃗⊥ ¼

0
B@

0

1.1075 × 10−1

0

1
CA T: ð6Þ

This value can be considered as the magnetic field that
corresponds to an equivalent COSY ring where the mag-
netic fields are evenly distributed.
Inserting B⃗ from Eq. (6) and E⃗ ¼ 0 into Eq. (2), yields

for the angular velocity in the particle rest system

Ω⃗tot ¼ Ω⃗MDM þ Ω⃗EDM ¼ −
q
m

0
B@

1
2
ηEDMβ

Gþ 1
γ

0

1
CAB⊥

¼

0
B@

−2.3171
3954845.3298

0.0000

1
CA s−1: ð7Þ

In the laboratory system, however, we observe with the
parameters of Table I the angular velocity with respect to
the cyclotron motion of the momentum,

Ω⃗Lab ¼ Ω⃗tot − Ω⃗rev ¼ −
q
m

0
B@

1
2
ηEDMβ

G

0

1
CAB⊥

¼

0
B@

−2.3171
−758 787.3121

0.0000

1
CA s−1; ð8Þ

where Ω⃗rev denotes the COSY angular velocity along e⃗y.
The spin-precession frequency yields the familiar value of

fs ¼
Ω⃗Lab

2π
¼

0
B@

−0.3688
−120 764.7515

0.0000

1
CA s−1; ð9Þ

which is also listed in Table I. The angle by which the stable
spin axis is tilted, i.e., the angle between Ω⃗Lab and e⃗y is
obtained by evaluating

ξ ¼ arctan

���� Ω⃗
Lab × e⃗y

Ω⃗Lab · e⃗y

����: ð10Þ

Inspecting Eq. (8), the effect of an EDM in a magnetic
machine can be expressed by the tilt of the stable spin axis
away from the vertical orientation in the ring, given by4

tan ξEDM ¼ ηEDMβ

2G
: ð11Þ

For an assumed EDM of d ¼ 1 × 10−20e cm, and for
deuterons at a momentum of 970 MeV=c, Eqs. (3) and
(11) yield ηEDM and ξEDM, as listed in Table I.

TABLE I. Parameters of the deuteron kinematics, the COSY ring, the deuteron elementary quantities, the electric dipole moment
(EDM) assumed, and the field integrals of the idealized rf Wien filter (to eight decimal places). The deuteron momentum P is used to
specify the deuteron kinetic energy T, and the Lorentz factors β and γ. The COSY circumference lCOSY is used to specify the COSY
revolution frequency frev and the spin-precession frequency fs. The deuteron mass m and the deuteron g factor, taken from the NIST
database [17] (not from the most recent one), are used to specify G. The deuteron EDM d is used to quantify ηEDM and ξEDM.

Quantity Value

Deuteron momentum (lab) P 970.000 000 00 MeV=c
Deuteron energy (lab) T 235.979 816 68 MeV
Lorentz factor (lab) β 0.459 368 91
Lorentz factor (lab) γ 1.125 814 78

COSY circumference lCOSY 183.572 000 00 m
COSY revolution frequency frev 750 197.934 871 76 Hz
COSY spin precession frequency fs 120 764.751 473 11 Hz

Deuteron mass m 1875.612 793 00 MeV
Deuteron g factor g 1.714 025 46
Deuteron G ¼ ðg − 2Þ=2 G −0.142 987 27

Deuteron EDM d 10−20e cm
Deuteron dimensionless ηEDM ηEDM 1.901 020 28 × 10−6

Deuteron EDM tilt angle ξEDM −3.053 662 07 × 10−6

rf Wien filter field amplification factor fampl 103

rf Wien filter electric field integral
R
EWF
x dz 2.200 000 00 × 106 V

rf Wien filter magnetic field integral
R
BWF
y dz 1.597 498 20 × 10−2 T m

rf Wien filter length lWF 1.550 000 00 m

4In Eq. (11), an additional factor of 2 has been inserted in the
denominator, correcting Eq. (10) of [18].
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C. Rotation matrices

Our description of the spin dynamics is based on the
SOð3Þ formalism. A rotation by an angle θ around an
arbitrary axis given by the unit vector n⃗ ¼ ðn1; n2; n3Þ is
described by the matrix [19]

Rðn⃗; θÞ ¼

0
B@

b11 b12 b13
b21 b22 b23
b31 b32 b33

1
CA; ð12Þ

with

b11 ¼ cos θ þ n12ð1 − cos θÞ
b12 ¼ n1n2ð1 − cos θÞ − n3 sin θ

b13 ¼ n1n3ð1 − cos θÞ þ n2 sin θ

b21 ¼ n1n2ð1 − cos θÞ þ n3 sin θ

b22 ¼ cos θ þ n22ð1 − cos θÞ
b23 ¼ n2n3ð1 − cos θÞ − n1 sin θ

b31 ¼ n1n3ð1 − cos θÞ − n2 sin θ

b32 ¼ n2n3ð1 − cos θÞ þ n1 sin θ

b33 ¼ cos θ þ n32ð1 − cos θÞ: ð13Þ

D. One turn spin rotation matrix with EDM

With a nonvanishing EDM, in the rotation matrix of
Eq. (12), the spins do not precess anymore around the
vertical axis e⃗y, but rather around the direction given by

c⃗ðξEDMÞ ¼
0
@

c1
c2
c3

1
A ¼

0
B@

sin ξEDM
cos ξEDM

0

1
CA: ð14Þ

Therefore, the ring rotation matrix can be obtained by
inserting into Eq. (12) the coefficients c1, c2, c3 from
Eq. (14), and by setting

θ ≔ θðtÞ ¼ ωst ¼ 2πfst: ð15Þ

Here, the time t is defined by the number of momentum
revolutions n in the ring,

t ¼ n · Trev ¼
n
frev

: ð16Þ

The spin-precession frequency fs, related to Ω⃗Lab intro-
duced in Eq. (8), can be expressed also via

fs ¼
ΩLab

2π
¼ Gγ

cos ξEDM
· frev ¼ νs · frev; ð17Þ

where frev denotes the revolution frequency, and νs the spin
tune, i.e., the number of spin precessions per turn in the
ring. A negative G factor indicates that the precession
proceeds opposite to the orbit revolution.
Thus, a one-turn matrix for the ring including the EDM

effect is obtained by inserting θðtÞ from Eq. (15) into
Eq. (12) at t ¼ Trev ¼ 1=frev. For comparison with numeri-
cal simulations, the ring matrix is explicitly given below (to
four decimal places) using the parameters listed in Table I,

Uringðc⃗;TrevÞ

¼

0
B@

5.3063×10−1 −1.4333×10−6 −8.4760×10−1

−1.4333×10−6 1.0000 −2.5883×10−6

8.4760×10−1 2.5883×10−6 5.3063×10−1

1
CA:

ð18Þ

E. Polarization evolution in the ring

The evolution of the polarization vector S⃗1 as a function
of time in the ideal bare ring is then described by

S⃗1ðtÞ ¼ Uringðc⃗; tÞ × S⃗0; ð19Þ

where S⃗0 denotes the initial polarization vector. Throughout
the present paper, the single-particle spin evolution is
described by unitary transformations which preserve the
magnitude of the polarization.
Figure 1 shows the situation when the spin rotation axis

c⃗, defined by Eq. (14), is tilted with respect to the normal to
the ring plane n⃗ (y axis in the figure).5

In Fig. 2, the solutions of S⃗1ðtÞ from Eq. (19) for two
different initial in-plane polarization vectors S⃗0 are shown

FIG. 1. The beam particles move along the z direction. In the
presence of an EDM, i.e., ξEDM > 0, the spins precess around
the c⃗ axis, and an oscillating vertical polarization component
pyðtÞ is generated, as shown in Fig. 2.

5Here, it is supposed that the polarimeter is ideally aligned to
the physical ring plane so that the left-right asymmetry measures
pyðtÞ, and the up-down asymmetry measures pxðtÞ.
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for ten turns. It is visible that the polarization evolution
occurs counterclockwise with respect to the clockwise
rotation of the particles in the ring, since the deuteron G
factor is negative.

III. rf WIEN FILTER IN A RING

A. Electric and magnetic fields of the rf Wien filter

The rf Wien filter, described in [4], has been designed in
order to be able to manipulate the spins of the stored
particles, avoiding as much as possible effects on the beam
orbit. To this end, great care was taken to minimize the
unwanted field components of the Wien filter and to
characterize them via the polynomial chaos expansion
[5]. In the EDMmode, the main component of the magnetic
induction B⃗WF is oriented along the y axis, and the main
component of the electric field E⃗WF along the x axis.
In order to avoid betatron oscillations in the beam, the

magnetic and electric fields must be matched to each other
to provide a vanishing Lorentz force F⃗L [see Eq. (3) of [4] ],

F⃗L ¼ 0 ⇔ E⃗WF
x þ cβ⃗ × B⃗WF

y ¼ 0: ð20Þ

According to a full-wave simulation (FWS),6 including
the ferrite cage (see label 6 in Fig. 1 of [4]), for an input
power of 1 kW, a field integral of B⃗WF along the beam
axis of

Z
lWF=2

−lWF=2
B⃗WFdz ¼

0
B@

2.73 × 10−9

2.72 × 10−2

6.96 × 10−7

1
CA Tmm ð21Þ

is obtained. Here, the active length of the rf Wien filter [4],
denoted by

lWF ¼ 1550 mm; ð22Þ

is defined as the region, where the fields are nonzero. Under
these conditions, the corresponding integrated electric field
components with ferrites are

Z
lWF=2

−lWF=2
E⃗WFdz ¼

0
B@

3324.577

0.018

0.006

1
CA V: ð23Þ

The design and construction of the rf Wien filter includes
a ferrite cage surrounding the electrodes, which improves
the field homogeneity and increases the magnitude of the
fields [4]. However, in order to simplify the installation, the
rf Wien filter was installed at COSY without ferrites. In
addition, it was decided to proceed without ferrites until a
first direct deuteron EDM measurement is available.
For this situation without ferrites, and for an input power

of 1 kW [ignoring the unwanted components of the field
integrals (BWF

x , BWF
z , and EWF

y , EWF
z )], one obtains from the

full-wave simulation (FWS)

EDLFWS
x ¼

Z
lWF=2

−lWF=2
EWF
x dz ¼ 2204.677 323V; and

BDLFWS
y ¼

Z
lWF=2

−lWF=2
BWF
y dz ¼ 1.598 492 × 10−5 Tm: ð24Þ

The ratio of electric and magnetic field integrals from the
FWS yields

(a) (b)

FIG. 2. Polarization evolution during idle precession for ten turns in an ideal ring using Eq. (19) and the parameters listed in Table I.
Panel (a) shows pxðtÞ, pzðtÞ and pyðtÞ for an initially longitudinal polarization, and panel (b) the same for initial sideways polarization.
The bunch revolution is indicated as well. The magnitude of the py oscillation amplitude is equal to the tilt angle ξEDM [see also Eq. (14)
and Fig. 1].

6The full-wave simulations (FWS) have been carried out using
CST Microwave Studio, Computer Simulation Technology AG,
Darmstadt, Germany, http://www.cst.com.
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1

βc
·
EDLFWS

x

BDLFWS
y

¼ 1.0015; ð25Þ

and should ideally be equal to unity. The subsequent
calculations use the field integrals of an idealized Wien
filter with vanishing Lorentz force F⃗L, given in the last
column of Table II.
A field amplification factor is applied in the simulations

to increase the field integrals of the ideal rf Wien filter (last
column Table II) in the simulations, so that

Z
EWF
x dz

���
used

¼ fampl ·
Z

EWF
x dz

���
idealZ

BWF
y dz

���
used

¼ fampl ·
Z

BWF
y dz

���
ideal

: ð26Þ

The field amplification allows one to speed up the simu-
lation calculations accordingly, without affecting other
aspects of the spin dynamics of the polarization evolution
in the ring. The reason is that the involved spin rotations
scale with the field integrals applied by the rf Wien filter. It
should be noted that if instead the magnitude of the EDM
would be scaled up, the spin dynamics would be affected
because ξEDM becomes larger (see Fig. 1). In the descrip-
tion of the spin evolution via spin rotations on the closed
orbit, momentum and position kicks are not considered.

B. Rotations induced by the rf Wien filter

The effect of the rf Wien filter on the polarization
evolution in the ring is implemented by an additional
rotation matrix. The spin rotation in the Wien filter depends
on the applied field integrals (right column of Table II),
multiplied by the factor fampl.

1. Spin rotation angle in the Wien filter

In the following, the spin rotation angle ψWF in the rf
Wien filter is calculated numerically using the Thomas-
BMT equation of Eqs. (1) and (2) with Ω⃗EDM ¼ 0. We start
with an initial spin vector

S⃗in ¼

0
B@

0

0

1

1
CA; ð27Þ

and we compute the final polarization vector S⃗fin via

ΔS⃗
Δt

¼ S⃗fin − S⃗in
Δt

¼ Ω⃗MDM × S⃗in: ð28Þ

Electric and magnetic field vectors for Ω⃗MDM in Eq. (2) are
obtained by computing the average fields from the ideal-
ized field integrals of the rf Wien filter (last column of
Table II), given by

E⃗WF ¼

0
BB@

R
EWF
x dz

lWF

0

0

1
CCA; and

B⃗WF ¼

0
B@

0R
BWF
y dz

lWF

0

1
CA; ð29Þ

where the effective length of the Wien filter is taken from
Eq. (22). These conditions provide for a vanishing Lorentz
force F⃗L [see also Eq. (20)].
After passing the rf Wien filter once, the final polariza-

tion vector is given by

S⃗fin ¼ ðΩ⃗MDM × S⃗inÞ · Δtþ S⃗in

≈ ðΩ⃗MDM × S⃗inÞ ·
lWF

βc
þ S⃗in; ð30Þ

and, after normalizing S⃗fin to unity, the angle between Sin
and S⃗fin is determined from the four-quadrant inverse
tangent

arctan 2ðS⃗in × S⃗fin; S⃗in · S⃗finÞ ¼

0
B@

0.000 000

ψWF

0.000 000

1
CA; ð31Þ

yielding numerically

jψWFj ¼ 3.758 457 73 × 10−6 rad; ð32Þ

using the parameters listed in Table I.

TABLE II. Values for the main electric and magnetic field integrals from the full wave simulation with and without ferrites for an input
power of 1 kW where B⃗WFke⃗y. The last column lists the electric and magnetic field integrals of an idealized Wien filter used in the
simulations. In this case, the unwanted field components vanish, i.e.,

R
EWF
y dz ¼ R

EWF
z dz ¼ R

BWF
x dz ¼ R

BWF
z dz ¼ 0.

Without ferrites

Field integrals rf Wien filter With ferrites (Real WF) (Real WF) (Idealized Wien filter)R
EWF
x dz [V] 3.325 × 103 2.204 677 × 103 2.200 000 00 × 103R

BWF
y dz [T m] 2.720 × 10−5 1.598 492 × 10−5 1.597 498 20 × 10−5
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The spin-rotation angle in the rf Wien filter, divided by
the idealized transverse magnetic field integral from
Table II, yields

jψWFjR
BWF
y dz

¼ 2.35271485 × 10−1 rad T−1 m−1: ð33Þ

Validating the numerical result for the spin-rotation angle
ψWF in the rf Wien filter obtained in Eq. (32) against the
analytic expression, given in Eq. (13) of [18], yields

ΩWF · Δt ¼ ψWF ¼ −
q
m
·
ð1þ GÞ

γ2
· BWF ·

lWF

βc

¼ −
q
m
·
ð1þ GÞ
γ2βc

Z
B⊥dl

¼ −
q
m
·
ð1þ GÞ
γ2β2c2

Z
E⊥dl

¼ −3.758 45 773 × 10−6 rad; ð34Þ

where the time interval Δt in the Wien filter has been
expressed through the length lWF.
The spin rotation angle in the rf Wien filter, given in

Eq. (34), constitutes an upper limit, which corresponds
to a situation when a sharp δ-function-like bunch passes
through the device. Realistically, the bunch distribution has
to be folded in, and the average spin-rotation angle will be
reduced correspondingly.

2. rf Wien filter rotation matrix

The spin-rotation angle of the rf Wien filter changes as a
function of time according to

ψðtÞ ¼ ψWF cos ðωWF · tþ ϕrfÞ; ð35Þ

where

ωWF ¼ 2πfWF: ð36Þ

The parametric spin resonance condition for the Wien filter
frequency is given by the sum of a harmonic multiple (K)
of the revolution frequency frev and the spin-precession
frequency fs [Eq. (17)],

fWF ¼ K · frev þ fs

¼
�
K þ Gγ

cos ξEDM

�
· frev; K ∈ Z: ð37Þ

The rf Wien filter was designed to allow for the operation at
different frequencies fWF [4]. Figure 3 shows the available
harmonics (closed circles) for protons (at T ¼ 135 MeV)
and for deuterons (at P ¼ 970 MeV=c).

The rf Wien filter rotation matrix is given by

UWFðtÞ ¼ R½n⃗WF;ψðtÞ�; ð38Þ

where in the generic case, n⃗WF is a unit vector along the
magnetic field of the Wien filter. The case

n⃗WF ¼ e⃗y; ð39Þ

for instance, denotes the Wien filter EDM mode. The rf
Wien filter matrix UWFðtÞ is only evaluated once per turn
when the condition

mod ðt; TrevÞ≡ 0 ð40Þ

is met stroboscopically, otherwise, the implemented func-
tion returns the I3 unit matrix.
When the Wien filter is rotated around the beam axis (z)

by some angle ϕWF
rot , and

n⃗WF ¼ n⃗WFðϕWF
rot Þ ¼ Rðe⃗z;ϕWF

rot Þ × e⃗y

¼

0
B@

cosðϕWF
rot Þ − sinðϕWF

rot Þ 0

sinðϕWF
rot Þ cosðϕWF

rot Þ 0

0 0 1

1
CA × e⃗y; ð41Þ

the oscillations also receive a contribution from the rotation
of the MDM in the horizontal magnetic field.

C. Polarization evolution in the ring
with rf Wien filter

The evolution of the polarization vector S⃗ as a function of
time t in the ring with rf Wien filter can be numerically
evaluated via

FIG. 3. Frequencies of the rf Wien filter for different harmonics
for proton (at T ¼ 135 MeV) and deuterons from Eq. (37). The
frequencies shown by open symbols (deuterons at K ¼ 0, and
protons atK ¼ −2) are not reachable with the present setup of the
driving circuit of the rf Wien filter.
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S⃗2ðtÞ ¼ Uringðc⃗; t − n · TrevÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rest of last turn

× ½UWFðt ¼ n · TrevÞ × Uringðc⃗; TrevÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
turn n

� � �

× ½UWFðt ¼ 2 · TrevÞ × Uringðc⃗; TrevÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
turn 2

× ½UWFðt ¼ TrevÞ × Uringðc⃗; TrevÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
turn 1

× S⃗0: ð42Þ

The corresponding situation of the ring is illustrated in
Fig. 4. The spin rotations in the ring can be described by
Uring. A turn begins with the revolution in the ring at t ¼ 0,
Trev;…, n · Trev, and it ends with one pass through the
rf Wien filter. Between two successive points in time at
which a particle encounters the rf Wien filter, its spin is just
idly precessing in the machine. Sequential unitary rotations
in Eq. (42) manifestly preserve the magnitude of the
polarization.
According to Eq. (42), the spin motion is stroboscopic in

the sense that the spin rotation follows the angle ψðtÞ of the
rf Wien filter [Eq. (35)] turn by turn. The rf Wien filter
therefore induces a stroboscopic turn-by-turn conversion of
the transverse in-plane polarization into a vertical one (or
vice versa). In the spirit of Eq. (30), Eq. (42) can be cast in

the form of a system of finite difference equations. In the
continuous limit, one obtains a system of homogeneous
first order differential equations with time-dependent coef-
ficients which are periodic functions of ωWF · t. The latter
property is imposed by the time-dependent spin rotation in
the Wien Filter, see Eq. (35).
The transition to the continuous limit is furnished by the

Bogolyubov-Krylov-Mitropolsky (BKM) averaging [14],
which approximates the turn-by-turn evolution by a con-
tinuous dependence on the revolution number, given by
n ¼ frev · t [Eq. (16)]. Then, Eq. (37) provides the con-
dition for exact parametric resonance [20–22] that gener-
ates the up-down oscillation of the polarization. For the
generic orientation of the rf Wien filter, the BKM averaged
buildup of the vertical polarization proceeds with the
resonance tune (or strength) [18]

εEDM ¼ 1

4π
jc⃗ × n⃗WFj · ψWF: ð43Þ

The above formula is universal for rf spin rotators of all
kinds, rf Wien filters, electric and magnetic rf dipoles, and
rf solenoids.
In the EDM mode [see Eq. (39)], the above equation

yields

εEDM ¼ 1

4π
sin ξEDM · ψWF

¼ −9.133 154 × 10−13; ð44Þ
using the parameters of Table I. Therefore, in the absence of
other perturbing spin rotations in the ring, a measurement
of the resonance tune constitutes a direct measurement of
the EDM.7 The generic case when the stable spin axis c⃗
acquires an additional tilt from in-plane magnetic fields will
be discussed in Sec. IV.
The direct simulations using Eq. (42), discussed below,

will furnish important cross-checks with respect to the
accuracy of the analytic approximations based on the BKM
averaging.

D. Radial magnetic rf field in the Wien filter

1. Driven oscillations and resonance strength εMDM

Driven oscillations of the vertical polarization pyðtÞ can
also be induced by the horizontal magnetic field of the rf
Wien filter that couples to the deuteron MDM. As an
illustration of the principal features of the polarization
evolution under exact parametric resonance [see Eq. (37)],
we discuss below the situation where the rf Wien filter is
operated in the so-called MDM mode with magnetic field
along −e⃗x, i.e., for ϕWF

rot ¼ 90°, and where the initial
polarization S⃗0 ¼ −e⃗y.

FIG. 4. Sequence of elements in the ring, corresponding to
Eq. (42). The Di (i ¼ 1;…; 24) indicate the 24 dipole magnets of
COSY. The counting of t begins with one turn in the ring, and, as
indicated, the Wien filter is passed at the end of each revolution.
For the discussion presented here, the dashed lines have zero
length.

7It should be noted that in conjunction with the resonance tune
ε, the superscript “EDM” (or “MDM”) is reserved for situations
when the primary focus is on the EDM (or MDM) effect itself.
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In this case n⃗WF ¼ −e⃗x, and Eq. (43) predicts the
resonance strength

jϵMDMj ¼ j cos ξEDM · ψWFj
4π

¼ 2.990 885 63 × 10−7; ð45Þ
where ψWF from Eq. (32) was used, and ξEDM from Table I.
Using the function for S⃗2ðtÞ, given in Eq. (42), for the

conditions of Table I, driven oscillations for the rf Wien
filter with magnetic field aligned along −e⃗x [see Eq. (41)]
were simulated. One example for K ¼ −1 is shown in
Fig. 5. Subsequently, the simulated oscillations were fitted
using the function

fðtÞ ¼ pyðtÞ ¼ a · sinðbtþ cÞ þ d: ð46Þ

The quality of the fit to the numerical data is evaluated in
terms of squared deviations via

SSE ¼
Xnpoints
i¼1

wi½pyðtiÞ − fðtiÞ�2; ð47Þ

where the weight factors are wi ¼ 1, and pyðtÞ ¼ e⃗y · S⃗2ðtÞ.
In the last row of Table III, the reduced χ2 ¼ SSE=ndf is
given, where npoints ¼ 101, and ndf ¼ npoints − 4 ¼ 97,
since the fitted function in Eq. (46) has four parameters.
The fit results are summarized in Table III. The angular

velocity Ωdriven ¼ b was obtained using the field integrals,
listed in the right column of Table II. The calculation used a
computation time8 of about 40 s. Under these conditions,
the driven oscillations exactly on resonance have an angular
velocity of

Ωdriven

fampl
¼ 1.409 78� 0.000 05 Hz: ð48Þ

Furthermore, the angular velocity normalized to the real
magnetic field integral yields

ΩdrivenR
BWF
y dz · fampl

¼ ð88.249� 0.003Þ s−1 T−1m−1: ð49Þ

The induced driven oscillations, shown in Fig. 5, cor-
respond to a resonance strength of

εMDM¼ Ωdriven

Ωrev ·fampl
¼ð2.99086�0.00010Þ×10−7; ð50Þ

where the factor fampl in the denominator corrects for the
field enhancement used in the simulation. The resulting
value agrees nicely within errors with jεEDMj of Eq. (45).

2. Width of the spin resonance

The detuning of the frequency fWF at which the rf Wien
filter is operated away from the spin-precession frequency
fs [see Eqs. (17) and (37)] can be parametrized by
substituting in Eq. (36)

fWF → fWF þ ΔfWF: ð51Þ

From about 50 simulations similar to the one shown in
Fig. 6, the oscillation amplitudes and the oscillation frequen-
cies as function of ΔfWF are obtained by fitting, invoking
again the parametrization given in Eq. (46). In order to reduce
the time required for the simulations, a field amplification
factoroffampl ¼ 103wasused,which leads tooscillations that
are faster by the same factor. The results, shown in Fig. 7, are
corrected for the field amplification factor employed in the
simulations. The dependence of the oscillation amplitudea of
the simulated data can be described by a Lorentz curve (Breit-
Wigner function) of the form

LðΔfWFÞ ¼ h ·
Γ2

Γ2 þ ð2ΔfWFÞ2
; ð52Þ

FIG. 5. Simulated driven oscillations on resonance using S⃗2ðtÞ
from Eq. (42) with initial vertical polarization S⃗0 ¼ −e⃗y, ϕrf ¼ 0

[Eq. (37)], and ϕWF
rot ¼ 90° [Eq. (41)] for the parameters given in

Table I and for the harmonic K ¼ −1. The plot contains 101
points for a total of 10 000 turns.

TABLE III. Result of the fit of the driven oscillation on
resonance for K ¼ −1, shown in Fig. 5, using 10 000 turns with
101 data points. The other four cases K ¼ 0, þ1, and �2, within
the given precision, yield identical values. SSE=ndf denotes the
sum of squared deviations, computed using Eq. (47), divided by
the number of degrees of freedom (ndf).

K −1
fampl 103

fWF 870 962.6863 Hz

a ð10000� 2Þ × 10−4

b ð1409.7817� 0.0470Þ s−1
c ð0.4997� 0.0001Þπ
d ð0.0000� 0.0001Þ
SSE/ndf 3.801 × 10−7

8All computations, using 64-bit double-precision floating point
numbers for which the machine epsilon ¼ 2.2 × 10−16 ¼
2−52, were performed on a Lenovo T460s machine with i7 Intel
(R) Core(TM) i7-6600U CPU@2.60GHz, equipped with 20 GB of
RAM.
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where

ΔfWF ¼ fWF − fs: ð53Þ

The normalization constant and the width of the Breit-
Wigner, obtained from the fit shown in the left panel of
Fig. 6, amount to

h ¼ 1.000 00� 0.000 09 and

Γ ¼ ð0.44879� 0.00007Þ Hz: ð54Þ

Forother harmonic excitationsK ¼ 0, 1, and�2used in the rf
Wien filter, within the errors the simulations yield the same
results as given above.
It should be emphasized that the off-resonance para-

metric modulation of the spin motion exhibits a profound
difference compared to the more familiar oscillations that
are driven by an external harmonic force [20–22]. In
parametric resonances, detuning causes a continuously
growing phase difference

ΔϕWF ¼ 2πΔfWFt ð55Þ

between rf phase and spin-vector phase. The accumulation
of the vertical polarization comes to an end as soon as
ΔϕWF ∼ π=2. Evidently, the exact pattern of the buildup of
the vertical polarization will depend on the relative magni-
tude ofΔfWF and the buildup frequency fdriven ¼ ϵEDMfrev,
as evidenced by comparing Figs. 5 and 6. A full-fledged
discussion of the Fourier spectrum of the off-resonance
polarization evolution will be reported elsewhere. Here,
only the gross features will be illustrated using the previous
example when the rf Wien filter is operated in MDMmode,
with initial S⃗0ðt ¼ 0Þ ¼ −c⃗ ≃ e⃗y.

FIG. 6. Off-resonance driven oscillations with ΔfWF ¼ 200 Hz
in Eq. (51) for the conditions of Table I.

FIG. 7. The left panel shows the amplitude a of simulated driven oscillations as function of the detuned frequency ΔfWF, corrected for
the field amplification factor fampl ¼ 103 used in the simulations. The oscillation amplitudes aðΔfWFÞ were extracted from fits using
Eq. (46). The normalization constant h and the full width at half maximum Γ of the fitted Breit-Wigner resonance [Eq. (52)] is indicated.
The resonance curves for K ¼ �0, �1, and �2 are very similar. The panels on the right show the angular velocity Ωdriven of the
oscillations as a function of ΔfWF, where both axes were corrected for the used fampl. In the bottom panel on the right, the region of
small detuning is shown together with a parabolic fit. The region of large detuning is shown in the top right panel together with linear fits
to the six outermost points in each branch.
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The obtained fit results of the simulated oscillations
ΩdrivenðΔfWFÞ ¼ b [Eq. (46)] are summarized in the panels
on the right in Fig. 7. Ωdriven exhibits a linear dependence
on ΔfWF at large jΔfWFj (strong detuning) and a parabolic
dependence for weak detuning. The linear fits to the six
outermost points, indicated in the top right panel in Fig. 7,
show that the transition between the two regimes occurs at
about ΔfWF ≈�0.2 Hz.
In the following, the off-resonance results of Fig. 7 are

subjected to an interpretation in terms of the BKM
averaging. For an exact parametric resonance, the BKM
averaging precisely predicts the harmonic evolution

S⃗yðtÞ ¼ −e⃗y cos ð2πϵEDMfrevtÞ; ð56Þ
with unity amplitude. In the off-resonance case, the BKM
averaging dictates the substitution

t →
sin ðπΔfWFtÞ

πΔfWF
: ð57Þ

The above substitution, together with Eq. (50), leads to

SyðtÞ ¼ − cos

�
2
fdriven

ΔfWF
sinðπΔfWFtÞ

�
: ð58Þ

For the limit of strong detuning, ΔfWF ≫ fdriven, one
obtains

SyðtÞ ≈ −1þ
�
fdriven

ΔfWF

�
2

½1 − cos ð2πΔfWFtÞ�: ð59Þ

In the above expression, the higher harmonics
cos ð2πNΔWFtÞ are suppressed by powers of the small
parameter ðfdriven=ΔfWFÞ2N and were omitted. The gross
features of SyðtÞ can then be approximated by the harmonic
expansion of Eq. (46), yielding

a ≃
�
fdriven

ΔfWF

�
2

; ð60Þ

b ¼ ΩdrivenðΔfWFÞ ≃ 2πΔfWF; and ð61Þ

c ≃
π

2
: ð62Þ

The linear behavior of Ωdriven at large ΔfWF, governed by
Eq. (61) and depicted in the right top panel of Fig. 7,
as expected yields for both branches a slope parameter
near �2π,

d1 ¼ −6.07� 0.02; and

d2 ¼ 6.08� 0.02: ð63Þ

The quadratic fit to ΩdrivenðΔfWFÞ in the bottom right
panel of Fig. 7 yields

ΩdrivenðΔfWF ¼ 0Þ ¼ ð1.41051� 0.00063Þ Hz; ð64Þ

which is consistent with the result for the same quantity,
given in Eq. (48).
Equating the asymptotic behavior of Eq. (60) to the one

of the Breit-Wigner parametrization of Eq. (52),

�
fdriven

ΔfWF

�
2

≈
�

Γ
2ΔfWF

�
2

; ð65Þ

one obtains

Γ ≃
1

π
ΩdrivenðΔfWF ¼ 0Þ ¼ 0.449 Hz; ð66Þ

which agrees well with the fit result given in Eq. (54).
At weak detuning, the argument of the cosine function in

Eq. (58) initially rises linearly with t, then reaches a
maximum and starts to decrease around

t ¼ TBKM ¼ π

2ΔfWF
: ð67Þ

At still larger t, the argument is a sine function of time with
the period 4TBKM, i.e., it exhibits the beating pattern,
typical of a spin echo. In our simulations, the spin-
evolution time is limited, t ≤ Tmax ¼ 0.013 s. Evidently,
the finite Tmax introduces a new frequency scale of

Δfmin ¼
2

Tmaxfampl
≈ 0.154 Hz: ð68Þ

With decreasing ΔfWF, we expect a change of the depend-
ence of Ωdriven as a function of ΔfWF as soon as the
argument of the cosine in Eq. (58) reaches unity. For
intermediate detuning, the results shown in Fig. 7 begin to
deviate from the linear behavior near a frequency of
ΔfWF ≈ 0.2 Hz, which roughly agrees with the estimate
given in Eq. (68).
The quality factor Q of a parametric spin resonance can

be defined as

Q ¼ fs
Γ
; ð69Þ

where fs denotes the spin-resonance frequency at K ¼ 0
from Eq. (37) and Γ is the width of the Breit-Wigner
function from Eq. (54). Thus, at a deuteron momentum of
P ¼ 970 MeV=c, a theoretical estimate of the Q value of
the oscillating deuteron spins in the machine amounts to

Q ¼ 120 764.751
0.4488

≈ 270 000: ð70Þ
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E. Vertical magnetic field in the rf Wien filter

With a vertical magnetic field in the rf Wien filter
(n⃗WF ¼ e⃗y), in the expression of the spin-resonance
strength [Eq. (43)], we obtain

jc⃗ × n⃗WFj ¼ sin ξEDM: ð71Þ

In this situation (EDM mode), the experimental determi-
nation of the resonance strength εEDM amounts to the
determination of the tilt angle ξEDM and of the associated
EDM, via Eqs. (11) and (3).

1. Polarization evolution with development of pyðtÞ
In the following, the polarization buildup in the machine

is addressed. The interplay of the different frequencies
involved is illustrated in Fig. 8.
The same situation as in Fig. 8 is depicted in Fig. 9, the

only difference is the larger turn number. The graph
illustrates the experimental evidence for an EDM, namely
a nonvanishing slope of the vertical polarization component
pyðtÞ. This slope describes the steady out-of-plane rotation
of the polarization vector on the background of oscillations
shown in the bottom panels of Fig. 2.
The slope can be determined by fitting using

pyðtÞ ¼ A · sinð2πfs · tþ ϕÞ þ B · tþ C; ð72Þ

where fs is not a fit parameter, but taken from Eq. (17). The
oscillation amplitude A in Fig. 9 perfectly matches the
angle ξEDM, used in the simulation (see Table I). Using
the above parametrization, the initial slope is given by

_pyðtÞjt¼0
¼ B: ð73Þ

2. py(t) dependence on the phases ϕrf and ϕSx0

The rf phase ϕrf is introduced in Eq. (35). During
a real experiment, this phase needs to be maintained by a
phase-locking system (for details see [23]). Another way to
parametrize the same effect is via the angle ϕSx

0
¼∠ðS⃗0;e⃗xÞ,

as illustrated in Fig. 10(a), keeping ϕrf constant.
Within the formalism described in [18], it is the

interplay between the stable spin axis c⃗ at the rf
Wien filter and its magnetic axis n⃗WF (kB⃗WFÞ that
controls via ½c⃗ × n⃗WF� the dependence on the orientation
of S⃗0. On the other hand, one could start by fixing the
orientation of S⃗0 by picking some angle ϕSx

0
, which

amounts to shifting the spin phase while keeping the rf
phase fixed. The resulting evolution of pyðtÞ, however,
must be the same, except for a possible constant shift
between the two phases ϕrf and ϕSx

0
.

The buildup of a vertical polarization component, which
is equivalent to a rotation of the polarization vector out of
the ring plane due to the EDM for a set of random
azimuthal angles ϕSx

0
and ϕrf has been computed. The

results are shown in Fig. 11. The fit results are listed in
Table IV.
Within the given uncertainties, the two simulated data

sets for ϕSx
0
and ϕrf , as expected, yield the same results. The

only difference is a phase shift of π=2 between fðϕSx
0
Þ and

gðϕrfÞ, as evidenced by the difference of the parameters
b1 − b2 from Table IV. The weights that are used to find the
optimum parameters are all equal for each point of the two
data sets.
Correcting the initial slope parameter a in Table IV for

the employed field amplification factor used in the simu-
lation yields a prediction for the initial slope that one would
expect in an ideal ring in the presence of an EDM of
d ¼ 10−20e cm. For an initial polarization jS⃗0j ¼ 1, with
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FIG. 8. Horizontal and longitudinal polarization components
pxðtÞ and pzðtÞ during ten turns in the machine, as described by
S2ðtÞ using Eq. (42) for the K ¼ −1 harmonic and an initial
polarization S⃗0 in the horizontal (xz) plane. The magnetic field
B⃗WF of the rf Wien filter points along e⃗y, and fampl ¼ 103. Also
indicated are bunch revolution and Wien filter rf frequency, and
the corresponding rf amplitude when the beam bunch meets the
Wien filter rf (pink filled circle).
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FIG. 9. Buildup of a vertical polarization component for the
conditions as indicated. The amplitude of the oscillating
pyðtÞ corresponds to the EDM tilt angle ξEDM, given in Table I.
The red line is a fit to the data using Eq. (72) that yields an initial
slope of dpyðtÞ=dtjt¼0

¼B¼ð4305.059�5.268Þ×10−6 s−1 (for
fampl ¼ 103).
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the parameters for the idealized rf Wien filter, given in the
last column of Table II, one obtains

_pyðtÞjt¼0
¼ aðϕSx

0
Þ

fampl
¼ ð4.305� 0.002Þ × 10−6 s−1: ð74Þ

The comparison of _pyðtÞjt¼0 with experiment requires
knowledge about the magnitude of S⃗ðtÞ. The approach
taken in [24] appears convenient, because the out-of-plane
rotation angle α is independent of the magnitude of the
beam polarization. The quantity of interest, indicated in
Fig. 10(b), in that case is _αðtÞjt¼0. The polarimeter
measures pyðtÞ, irrespective of the in-plane polarization
pxzðtÞ, given by

pxzðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pxzð0Þ2 − pyðtÞ2

q
: ð75Þ

From this it follows that

_αðtÞ¼ d
dt
arctan

�
pyðtÞ
pxzðtÞ

�
⇒ _αðtÞjt¼0¼

_pyðtÞjt¼0

pxzð0Þ
: ð76Þ

3. Initial slope versus slow oscillation

Figure 12(a) shows the initial slopes for four different
assumed EDMs, for an ideal ring and an idealized Wien
filter, based on the conditions listed in Table I. The EDMs
manifest themselves twofold, namely in different slopes
and in larger amplitudes of the fast oscillation. The linear
slopes in Fig. 12(a) of course reflect just the very beginning
of a sinusoidal oscillation that becomes visible only when
the EDM is large. Such a situation is depicted in Fig. 12(b),
where

d ¼ 10−15e cm ð77Þ

has been used in the simulation.
The initial slope of the vertical polarization component is

related to the strength of the EDM spin resonance. Another
way to obtain this information is to vary the rf phase ϕrf , as
indicated in Fig. 11. The initial slope can of course also be
obtained from the slow oscillation. The slope can be
described by

(a) (b)

FIG. 10. Panel (a): Definition of the in-plane initial spin orientation angle ϕSx
0
, and (b) relation between S⃗yðtÞ and the out-of-plane

inclination angle αðtÞ.
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FIG. 11. The red (blue) curve shows the initial slope as a
function of 25 random values of ϕSx

0
and ϕrf , using a field

amplification factor fampl ¼ 103. The simulated data are fitted
using the functions indicated in the inset. The resulting parameters
are listed in Table IV. Each data point is obtained from a graph like
the one shown in Fig. 9, but for 10 000 turns and 501 points.

TABLE IV. Summary of parameters obtained (for K ¼ −1) via
fitting the oscillatory patterns of the initial slopes shown in
Fig. 11 as function of ϕSx

0
and ϕrf , still including the factor

fampl ¼ 103. For the other harmonics (K ¼ 0, 1, and �2), within
the given uncertainties, the same values are obtained.

ϕrf ϕSx
0

a1;2 ð4309.884�2.945Þ×10−6 ð4304.623�2.290Þ×10−6

b1;2 ð15711.584�6.254Þ×10−4 ð−17.686�3.637Þ×10−4

c1;2 ð8.516� 2.075Þ × 10−6 ð0.367� 1.280Þ × 10−6

χ2

ndf
4.2 × 10−17 5.9 × 10−17

SPIN DYNAMICS INVESTIGATIONS FOR THE … PHYS. REV. ACCEL. BEAMS 23, 024601 (2020)

024601-13



pyðtÞ ¼ a sinðωtÞ · cosϕrf ; ð78Þ

which respects the property that for any ϕrf, pyðtÞjt¼0 ¼ 0.
The derivative of pyðtÞ with respect to time is

_pyðtÞ ¼ aω cosðωtÞ · cosϕrf

⇒ _pyðtÞjt¼0 ¼ aω · cosϕrf ¼ ð3933� 19Þ s−1; ð79Þ

where the value given corresponds to the situation shown in
Fig. 12(b).
Numerically, the red curve in Fig. 12(b) has been

parametrized by the function

fðtÞ ¼ pyðtÞ ¼ a sinðω · tþ ϕÞ: ð80Þ

The amplitude of the averaged oscillation [red curve in
Fig. 12(b)] can be predicted directly from the tilt angle of
the stable spin axis due to the EDM, via

a ¼ cos ðξEDMðd ¼ 10−15e cmÞÞ ¼ 0.9564: ð81Þ

With ξEDMðd ¼ 10−15e cmÞ ¼ −0.296 373, within the
errors, one obtains a perfect match to the value of a given
obtained from the fit using Eq. (80), which yields

a ¼ 0.9560� 0.0038;

ω ¼ ð4114.3813� 11.8908Þ s−1; and

ϕ ¼ −0.0034� 0.0082: ð82Þ

The envelope boscðtÞ of the fast oscillations is consistent
with the law

boscðtÞ ¼ sin½ξEDMðdÞ� · cosðωtÞ: ð83Þ

According to [18], the EDM induced angular velocity ω
in Eq. (78) can be expressed through the EDM resonance
strength εEDM and the orbital angular velocity frequency
ωrev, via

ω ¼ εEDM · ωrev: ð84Þ

Now we can apply Eq. (84) to interpret the result for the
initial slope for d ¼ 10−20e cm, given in Eq. (74).
Equations (80) and (81) entail

_pyðtÞjt¼0
¼ cos ξEDM · jεEDMj · ωrev ¼ 4.305 033 × 10−6;

ð85Þ

where εEDM from Eq. (44) was used with ξEDM from
Table I. Nice agreement is obtained with the value of the
initial slope from the simulations [Eq. (74)].
In terms of the initial slope, the resonance strength is

given by

εEDM ¼ _pyðtÞjt¼0

a cosϕrf
·

1

ωrev
: ð86Þ

While the slopes can be easily determined as a function of
ϕrf , the latter method using Eq. (86) clearly also requires
knowledge about the oscillation amplitude a. Knowing the
initial slopes alone does not allow one to determine the
resonance strength εEDM.
Using the technique of variation of ϕrf , as shown in

Fig. 11, Fig. 13 yields an initial slope of

_pyðtÞjt¼0
¼ ð3959� 35Þ s−1; ð87Þ
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FIG. 12. Various EDM induced oscillation pattern for short [panel (a)] and long evolution times (b) using different amplification
factors and values for the EDM.
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which agrees numerically well within errors with the value
given in the last line of Eq. (79).

4. Determination of the running spin tune,
based on the polarization evolution S⃗2ðtÞ

The standard definition of the spin tune as a rotation
around the local stable spin axis n⃗s at every point in the
machine holds for a static machine. It does not involve a
time dependence of the polarization evolution, like the one
generated by the rf Wien filter. If the polarization is
time dependent, the term running or instantaneous spin
tune will be used in the following. In case there is a time-
dependent or instantaneous spin tune, the direction of n⃗s
also changes as a function of time, i.e., n⃗s ≡ n⃗sðtÞ (see
further Sec. III E 5).
Using the numerical simulations for S⃗2ðtÞ, or any other

spin-evolution function, one can numerically determine the
running spin tune in the following way. For this one needs
three spin vectors from the spin-evolution function, say

a⃗ ¼ S⃗2ðtÞ;
b⃗ ¼ S⃗2ðtþ TrevÞ; and

c⃗ ¼ S2ðtþ 2 · TrevÞ: ð88Þ

Using these three vectors, two more vectors are con-
structed,

d⃗ðtÞ ¼ a⃗ − b⃗ and e⃗ðtÞ ¼ a⃗ − c⃗: ð89Þ

The in-plane angle between d⃗ðtÞ and e⃗ðtÞ can be used to
determine the running, time-dependent spin tune νsðtÞ. To
this end, we define the normal vector N⃗ of the plane that
contains d⃗ and e⃗,

N⃗ ¼ d⃗ × e⃗

jd⃗ × e⃗j
; ð90Þ

which corresponds to the instantaneous spin axis. Using N⃗,
we find the in-plane components of b⃗ and c⃗, via

b⃗⊥ ¼ b⃗ × N⃗ and c⃗⊥ ¼ c⃗ × N⃗: ð91Þ

The normalized versions of these vectors are called

f⃗ ¼ b⃗⊥
jb⃗⊥j

and g⃗ ¼ c⃗⊥
jc⃗⊥j

; ð92Þ

and the running spin tune is determined from

νsðtÞ ¼
1

2π

G
jGj arctan

���� f⃗ðtÞ × g⃗ðtÞ
f⃗ðtÞ · g⃗ðtÞ

����: ð93Þ

The factors in front of arctangent take care that νsðtÞ
generates the correct sign based on the G-factor and the
number of spin precessions per turn.
As a cross-check of the algorithm, with the rf Wien filter

switched off, for the beam conditions given in Table I,
Eq. (93) yields

for d ¼ 0∶ νð0Þs ¼ Gγ ¼ −1.609771 846 321 990 × 10−1;

for d ¼ 1 × 10−20e cm∶ νð1Þs ¼ Gγ
cos ξEDM

¼ −1.609 771 846 329 495 × 10−1; and

Δνs ¼ νð0Þs − νð1Þs ¼ þ7.505 × 10−13; ð94Þ

where all three numbers have been calculated using
Eq. (93). As an additional cross-check, the difference of
the spin tunes yields

νð0Þs

cos ξEDM
− νð1Þs ≈ 10−16; ð95Þ

which is very close to the achievable machine precision
(see footnote 8).
During a revolution in the machine, as prescribed by

S⃗2ðtÞ using Eq. (42), the spin tune remains constant during
each turn [see Fig. 14(a)]. When the rf Wien filter is
switched on, due to the additional spin rotation in the time-
varying rf field, the instantaneous spin tune jumps from
turn to turn. As depicted in Fig. 14(b), the oscillation
amplitude of the spin tune variation due to the rf Wien filter
using a power of 1 kW (see Table I) is well consistent with
the expectation from the spin rotation formalism:
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FIG. 13. Initial slope as a function of 24 random values
of ϕrf using a field amplification factor fampl ¼ 104 and
the indicated EDM. The simulated data are fitted using the
function indicated in the inset. The resulting parameters
are a ¼ ð3959.122� 35.344Þ, b ¼ ð4135.901� 0.009Þ, and
c ¼ ð39.861� 25.995Þ. Each data point is obtained from a graph
like the one shown in Fig. 9, but for ten turns and 1001 points.

SPIN DYNAMICS INVESTIGATIONS FOR THE … PHYS. REV. ACCEL. BEAMS 23, 024601 (2020)

024601-15



a ¼ ð5.7� 0.2Þ × 10−7 ≈
jψWFj
2π

¼ 6.0 × 10−7: ð96Þ

The average spin tune, however, remains constant.

5. Instantaneous spin orbit determination
based on S⃗2ðtÞ

The running spin orbit vector n⃗s can be easily determined
from the procedure described in the previous section, using
the normal vector N⃗, defined in Eq. (90),

n⃗sðtÞ ¼ N⃗ðtÞ: ð97Þ

Similarly to the running (instantaneous) spin tune, the
instantaneous spin orbit exhibits oscillating in-plane polari-
zation components.

IV. POLARIZATION EVOLUTION WITH rf WIEN
FILTER AND SOLENOIDS

A. Evolution equation with additional
static solenoids

In the course of this paper, with the rf Wien filter in EDM
mode (B⃗WFke⃗y), the EDM interaction with the motional
electric field in the ring was the only source of up-down
spin oscillations.
In the following, two static solenoids in the straight

sections will be added to the ring. Besides that, we shall

make an allowance for rotations of the rf Wien filter around
the longitudinal e⃗z (momentum) direction. Such rotations
induce a radial magnetic rf field, and, in conjunction
with the solenoidal magnetic fields, we start mixing the
EDM and MDM induced rotations. The idea, common to
all EDM experiments, is to disentangle the EDM signal
using an extrapolation to a vanishing MDM contribu-
tion [25,26].
With two static solenoids added to the ring, the resulting

sequence of elements is depicted in Fig. 15. The one-turn
ring matrix can be split into two arcs, one arc made of the
dipole magnets D1 to D12, and the second arc made of
dipoles D13 to D24. Since

Uringðc⃗; TrevÞ ¼ Uarc 2
ring ðc⃗; Trev=2Þ × Uarc 1

ring ðc⃗; Trev=2Þ; ð98Þ

the two additional solenoids can be inserted before and
behind arc 2, leading to

U2 sol
ring ðc⃗; Trev; χ

S1
rot; χ

S2
rotÞ

¼ Rðe⃗z; χS2rotÞ × Uarc 2
ring ðc⃗; Trev=2Þ ×Rðe⃗z; χS1rotÞ

× Uarc 1
ring ðc⃗; Trev=2Þ; ð99Þ

invoking again the generic rotation matrix Rðe⃗z; χrotÞ
from Eq. (12).
In a similar fashion as in Eq. (42), one can then write for

the polarization evolution,
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FIG. 14. The graph in panel (a) shows the spin tune in the machine, calculated using Eq. (93) for the conditions listed in Table I for
d ¼ 0 (red) and d ≠ 0 (blue) and rf Wien filter switched OFF. Panel (b) shows the time dependence when the rf Wien filter is switched
ON in EDM mode with fampl ¼ 1. The red curve indicates the spin oscillation frequency fs from Eq. (17), and the blue line denotes the

running spin tune difference νsðtÞ − νð1Þs for each turn. It should be noted that the initial spin vector S⃗0 is not in the ring (xz) plane
(see Fig. 1).
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S⃗3ðtÞ ¼ Uringðc⃗; t − n · TrevÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rest of last turn

× ½UWFðt ¼ n · TrevÞ × U2 sol
ring ðc⃗; Trev; χ

S1
rot; χ

S2
rotÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

turn n

× � � �

× ½UWFðt ¼ 2 · TrevÞ × U2 sol
ring ðc⃗; Trev; χ

S1
rot; χ

S2
rotÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

turn 2

× ½UWFðt ¼ TrevÞ × U2 sol
ring ðc⃗; Trev; χ

S1
rot; χ

S2
rotÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

turn 1

× S⃗0: ð100Þ

B. Spin-rotation angle in a static solenoid

In a solenoidal magnet with a field integral BDL ¼R
Bkdl, the spins are rotated around the longitudinal

direction e⃗z, and the rotation angle is given by

χSolrot ¼ −
q
m
·
ð1þGÞ
γβc

Z
Bkdl: ð101Þ

The spin-rotation angle in the solenoid for deuterons at a
momentum of P ¼ 970 MeV=c, normalized to the mag-
netic field integral, amounts to

χSolrotR
Bkdl

¼ −0.264 872 rad T−1m−1: ð102Þ

C. Spin tune and spin closed orbit
with solenoids using S⃗3ðtÞ

In the following, the abbreviation, e.g., χSol 1rot ¼ χ1 is
used. For an ideal ring, free of magnetic imperfections, the
spin tune change Δνsðχ1; χ2Þ, due to solenoids S1 and S2 in
the ring (see Fig. 15), the left side of Eq. (30) of Ref. [18]
can be approximated by πΔνsðχ1; χ2Þ · sinðπν0sÞ, where ν0s
denotes the unperturbed spin tune in the machine. For small
spin-rotation angles in the solenoids, Eq. (30) of [18] can
thus be approximated by

Δνsðχ1; χ2Þ ¼
2χ1χ2 þ cos ðπν0sÞ · ðχ21 þ χ22Þ

8π sin ðπν0sÞ
: ð103Þ

FIG. 15. Sequence of elements in the ring, corresponding to Eq. (100), including besides the rf Wien filter, also two static solenoids S1
and S2.
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In order to validate the spin-evolution equation for S⃗3ðtÞ,
given in Eq. (100), in Fig. 16 the spin-tune changes Δνs are
compared to the approximation of Eq. (103) for four
different cases.

D. Spin-closed orbit in a nonideal lattice

The static solenoids or magnetic imperfections in the
ring affect the spin-closed orbit vector n⃗s ¼ c⃗ in the
machine. The situation is similar to the one depicted in
Fig. 1, but there, only the tilt due to the EDM was taken
into account. The presence of static solenoids in the ring
can be numerically evaluated using Eq. (97) with S⃗3ðtÞ
from Eq. (100).
Since the time t begins to count right behind the rf Wien

filter (see Fig. 15), evaluation of Eq. (97) at t ¼ Trev {or
integer multiples of Trev [see Eq. (40)]}, yields the
orientation of the spin-closed orbit vector c⃗ at the rf
Wien filter

c⃗ ¼ n⃗sðt ¼ TrevÞ: ð104Þ

Figure 17 shows how the stable spin axis c⃗ ¼ ðcx; cy; czÞ
at the rf Wien filter is affected by the two solenoids S1 and
S2, and the presence of an EDM d. For comparisons, a
number of special cases was numerically evaluated and is
listed in Table V.

E. Strength of the EDM resonance

As depicted in Fig. 14, and already discussed in
Sec. III E 4, the operation of the rf Wien filter modulates
the spin tune. While the average spin tune is equal to the
one obtained when the rf Wien filter is switched off,
solenoids and magnet misalignments in the ring, however,
affect the spin tune. Therefore, the spin-precession fre-
quency and thus the frequency at which the rf Wien filter
should be operated, differs from the unperturbed spin tune.
The spin tune νs must be determined anew for every
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FIG. 16. Change of the spin tune Δνsðχ1; χ2Þ for deuterons using two solenoids in the machine (as indicated in Fig. 15) under the

conditions of Table I using Eq. (93) and S⃗3ðtÞ from Eq. (100). Panels (a) and (c) show for d ¼ 0Δνsðχ1; χ2Þ ¼ νsðtÞ − νð0Þs , while (b) and

(d) show for d ¼ 10−20e cm Δνsðχ1; χ2Þ ¼ νsðtÞ − νð1Þs . Panels (a) and (b) χ2 ¼ 0; (c) χ1 ¼ χ2: and (d) χ1 ¼ −χ2. ν
ð0Þ
s and νð1Þs are given

in the insets [see also Eq. (94)]. The residuals R show the difference between the simulations and the approximations using Eq. (103).
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solenoid setting to ensure that the resonance frequency for
the rf Wien filter is given by

fWF ¼ ðK þ νsÞ · frev; K ∈ Z; ð105Þ
and this frequency needs to be used in ψðtÞÞ [Eq. (35)],
as it controls the rf Wien filter spin-rotation matrix
R½n⃗WF;ψðtÞ� [Eq. (38)].
The EDM resonance strength εEDM, actually a resonance

tune, is defined as the ratio of the angular velocity of the
vertical polarization oscillation Ωpy induced by the EDM
relative to the orbital angular velocity Ωrev,

εEDM ¼ Ωpy

Ωrev : ð106Þ

Since Ωpy
corresponds to ω [first line in Eq. (79)], the

resonance strength can in principle be determined from the
sole observation of Ωpy

.
Alternatively, the resonance strength can be determined

from the last line in Eq. (79) via

εEDM ¼ _pyðtÞjt¼0

a cosϕ
·

1

Ωrev ; ð107Þ

FIG. 17. Six panels showing the components of c⃗ ¼ ðcx; cy; czÞ at the rf Wien filter for different combinations of spin rotations in the
two solenoids in the ring (see Fig. 15), for deuterons at a momentum of P ¼ 970 MeV=c.

TABLE V. Components of the spin closed orbit vector c⃗ ¼ ðcx; cy; czÞ at the rf Wien filter, for different settings of the solenoids S1 and
S2 in the machine (see Fig. 15).

χ1 [deg] χ2 [deg] d [e cm] cx cy cz

0 0 0 0.000 000 1.000 000 0.000 000
0 0 10−20 −3.053 662 × 10−6 1.000 000 4.255 557 × 10−17

1 0 10−20 −3.053 167 × 10−6 9.998 378 × 10−1 1.801 136 × 10−2

0 1 10−20 −8.728 505 × 10−3 9.998 378 × 10−1 1.575 676 × 10−2

1 1 10−20 −8.724 615 × 10−3 9.993 921 × 10−1 3.375 307 × 10−2

1 −1 10−20 8.723 460 × 10−3 9.999 594 × 10−1 2.254 871 × 10−3

−1 1 10−20 −8.729 567 × 10−3 9.999 594 × 10−1 −2.254 871 × 10−3

−1 −1 10−20 8.718 511 × 10−3 9.993 922 × 10−1 −3.375 307 × 10−2
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but this requires that the initial slopes need to be determined
as a function of, e.g., ϕ ¼ ϕrf . The statistical aspects of this
will be further elucidated in Sec. IV E 2.

1. Evolution of pyðtÞ as a function of ϕWF
rot and χ Sol 1rot

The EDM resonance strength εEDM [Eq. (106)] manifests
itself in the oscillation frequency, as illustrated in Fig. 18
for two pairs of Wien filter rotation angle and spin-rotation
angle in the solenoid S1, ðϕWF

rot ; χ
Sol 1
rot Þ, while χSol 2rot ¼ 0.

The resulting oscillation pattern of py is fitted using

fðtÞ ¼ a sinðωtþ ϕÞ þ b; ð108Þ

amplitude a and frequency ω are given in each panel,
together with various other parameters. The calculation for
the ideal ring situation in panel (b) uses a 1000 times larger
assumed EDM value of d ¼ 10−17e cm and a larger
number of turns nturns ¼ 100 000, in order to make the
oscillations of pyðtÞ visible when the rf Wien filter does not
contribute a sideways magnetic field.

2. Comparison of εEDM from Ωpy and _pyðtÞjt = 0
by variation of ϕrf

One would expect that the variation of the rf phase ϕrf
will affect the resulting oscillation amplitudes a and offsets
b of Fig. 18, while the oscillation frequencies ω, and thus
the resonance strengths εEDM, remain unchanged.
In the panels of Fig. 19, for the same combinations of

ðϕWF
rot ; χ

Sol 1
rot Þ, shown in Fig. 18, _pyðtÞjt¼0 and the oscillation

frequency ω are computed for 36 randomly picked values

of ϕrf . The graph illustrates that in the presence of solenoid
fields and rf Wien filter rotations, the determination of
_pyðtÞjt¼0 by variation of ϕrf , making use of Eq. (107) yields
results comparable to the direct determination of the
resonance strength from the oscillation frequency Ωpy

via Eq. (106). The oscillation amplitudes a and _pyjt¼0

exhibit an identical dependence on ϕrf , while the obtained
resonance tune εEDM remains constant over the whole range
of ϕrf .
The resonance strengths extracted from _pyðtÞjt¼0 andΩpy

make use of the very same simulated data. The results are
summarized in Table VI, where for the numbers that should
match, the markers (A), (B), and (C) are used. Although the
different extraction methods show good overall agreement,
the uncertainties of εEDMðΩpyÞ, however, are substantially
smaller than those from εEDMð _pyjt¼0Þ by a factor of at least
20. The reason for this is that in general frequencies can be
measured more accurately than other quantities, and the
determination of εEDMðΩpyÞ involves fewer uncertainties in
the error propagation. The most accurate determinations are
obtained from Ωpy when χSol 1rot ¼ 0.
In the following, we briefly comment on some features

of the results obtained so far (Fig. 18, Table VI). We
observe that numerically 2 sin πνs ¼ 1.0041 ≃ 1. Then,
according to the Appendix, we expect

að−1°;−1°Þ ¼ cos

�
π

4

�
· að0°; 0°Þ; ð109Þ

in good agreement with the results shown in Fig. 19. The
resonance tunes determined from _pyjt¼0 and from Ωpy are
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FIG. 18. Two examples for the evolution of pyðtÞ using S⃗3ðtÞ from Eq. (100) for different combinations of Wien filter and solenoid
spin rotation angle, denoted by ðϕWF

rot ; χ
Sol 1
rot Þ, where χSol 2rot ¼ 0. The parameters used for the calculation are indicated in each panel. For

the beam, the conditions of Table I apply. The Wien filter is operated at harmonic K ¼ −1. The EDM assumed in panel (b) is 1000 times
larger than in (a). The ratio of the fitted oscillation amplitudes in panels (a) and (b) is compatible with the expectation of a factor

ffiffiffi
2

p
=2

[see Eq. (109)].
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identical. For the above reason of 2 sin πνs ≃ 1 and small
EDM contributions, the following equalities hold:

εEDMð−1°;−1°Þ ¼ εEDMð1°; 1°Þ; and

εEDMð�1°;−1°Þ ¼
ffiffiffi
2

p
· εEDMð−1°; 0°Þ: ð110Þ

F. Resonance strength εEDM for random
points ðϕWF

rot ;χ
Sol 1
rot Þ

The resonance strengths shown in Fig. 20 are obtained
using the fit function of Eq. (108) (ω ¼ Ωpy) and then
Eq. (106) for a set of randomly chosen pairs of ðϕWF

rot ; χ
Sol 1
rot Þ

and χSol 2rot ¼ 0. For all points, ϕrf ¼ 0 and S⃗0 ¼ ð0; 0; 1Þ,
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FIG. 19. Two examples showing 36 random values of ϕrf that are used to obtain the resonance strengths εEDM from graphs like the
ones shown in Fig. 18, using Eqs. (106) and (107) for combinations of the Wien filter and solenoid spin rotation angle, denoted by
ðϕWF

rot ; χ
Sol
rot Þ. Depicted here as a function of the randomly chosen ϕrf are the extracted initial slopes _pyðtÞjt¼0, ω ¼ Ωpy , and the amplitude

a of the py oscillation [Eq. (108)]. The parameters used for the calculation are nturns ¼ 2 × 104, npoints ¼ 200, and d ¼ 10−20e cm. To
enhance the effect, in panel (b), nturns ¼ 105, and the assumed EDM is d ¼ 10−17e cm, i.e., 1000 times larger than in (a). For the beam,
the conditions of Table I apply. The rf Wien filter is operated at harmonic K ¼ −1. The extracted resonance strengths are summarized in
Table VI.

TABLE VI. Resonance strengths extracted from Fig. 19 for nine different combinations ðϕWF
rot ; χ

Sol 1
rot Þ for an otherwise ideal COSY ring

assuming a deuteron EDM of d ¼ 10−20e cm [for (b), at (0°, 0°), d ¼ 10−17e cm]. The beam conditions are given in Table I using the
real field magnitudes of the rf Wien filter, since fampl has been divided out. For the calculations nturns ¼ 2 × 104 and npoints ¼ 200,
except for (b), where nturns ¼ 105. According to the equalities of Eq. (110), within the errors, the sets of numbers with markers (A), (B),
and (C) should match.

[10−11 Hz] ðϕWF
rot ; χ

Sol 1
rot Þ

ð−1°;−1°Þ ð0°;−1°Þ ð1°;−1°Þ
εEDM From _pyjt¼0 (A) 745.563� 3.910 (B) 539.778� 1.695 (A) 750.455� 3.312

From Ωpy (A) 750.017� 0.117 (B) 538.659� 0.099 (A) 749.840� 0.128

ð−1°; 0°Þ ð0°; 0°Þ ð1°; 0°Þ
εEDM From _pyjt¼0 (C) 517.167� 2.741 ð90.251� 0.404Þ × 10−3 (C) 518.440� 2.284

From Ωpy (C) 521.890� 0.001 ð91.312� 0.005Þ × 10−3 (C) 521.681� 0.001

ð−1°; 1°Þ ð0°; 1°Þ ð1°; 1°Þ
εEDM From _pyjt¼0 (A) 748.511� 3.249 (B) 540.799� 3.136 (A) 749.413� 3.891

From Ωpy (A) 749.960� 0.121 (B) 538.619� 0.129 (A) 749.842� 0.113
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and an assumed EDM of 10−18e cm, for which the EDM
tilt angle is ξEDM ≈ 300 μrad.
The evolution function S⃗3ðtÞ [Eq. (100)] uses

the ideal ring with solenoid S1 switched ON (χSol 2rot ¼ 0)
and rf Wien filter. The calculated resonance strength
εEDM in the angular range ϕWF

rot ¼ ½−0.1°;…;þ0.1°� and
χSol 1rot ¼ ½−0.1°;…;þ0.1°�, shows a clearly visible shift of
the pattern away from the origin [Fig. 20(b)]. The shift
amounts to about 0.18° ¼ sinðξEDM ¼ 0.3 mradÞ. The
relative uncertainties of the points shown in Fig. 20,
obtained from the fits, range from ΔεEDM=εEDM ¼ 2.0 ×
10−5 to 4.1 × 10−2.
For the set of points ðϕWF

rot ; χ
Sol 1
rot Þ shown in Fig. 20, the

initial spin tunes νs, i.e., before the rf Wien filter is turned
on, are shown in Fig. 21. The result indicates the familiar

quadratic dependence Δνsðχ1; χ2 ¼ 0Þ ∝ χ21, as described
by Eq. (103).

G. Characterization of εEDMðϕWF
rot ;χ

Sol 1
rot Þ

1. Operation of rf Wien filter exactly on resonance

In this section, the contour of the surface εEDMðϕWF
rot ;

χSol 1rot Þ, shown in Fig. 20(a), is compared to the theoretical
expectation, given in Eq. (A5). The functional dependence
describes a quadratic surface, also know as elliptic parabo-
loid, and is used here in the form of

ðεEDMÞ2 ¼ A · ðϕWF
rot − ϕ0Þ2

þ B ·

�
χSol 1rot

2 sin πνð2Þs

þ χ0

�
2

þ C; ð111Þ

where the unperturbed spin tune νð2Þs for the EDM of
d ¼ 10−18e cm, assumed in the simulation, is given by

νð2Þs ¼ −0.160977 192137 641; and

2 sin πνð2Þs ¼ −0.968 883 216 683 076: ð112Þ

It should be emphasized that the simulations shown in
Fig. 20 reflect the situation when the rf Wien filter is
operated exactly on resonance. During the corresponding
EDM experiments in the ring, however, a certain spin-tune
feedback is imperative to maintain the resonance condition
for long periods of time, i.e., the spin-precession frequency
in Eq. (35), using the measured spin tune [27]. To maintain
phase and frequency lock when the rf Wien filter is actively
operating, turns out to be much more tricky, and more
sophisticated approaches, beyond those outlined in [23],
are presently being pursued by the JEDI collaboration.
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FIG. 20. Panels (a) and (b) show the resonance strengths εEDM as defined in Eq. (106) on a grid in the range ϕWF
rot ¼ ½−0.1°;…;þ0.n1°�

and χSol 1rot ¼ ½−0.1°;…;þ0.1°� with an assumed EDM of d ¼ 10−18e cm. Each point in panels (a) and (b) is obtained from a calculation
with nturns ¼ 200000 and npoints ¼ 100.

FIG. 21. Initial spin tunes νs for the angular intervals ϕWF
rot ¼

χSol 1rot ¼ ½−0.1°;…;þ0.1°� for the data points ðϕWF
rot ; χ

Sol 1
rot Þ

shown in Figs. 20(a) and 20(b) with an assumed EDM of
d ¼ 10−18e cm.
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Only such a phase and frequency lock during a measure-
ment cycle enables one to take full advantage of the large
spin-coherence time (SCT) of τSCT ≃ 1000 s, achieved by
JEDI at COSY [28,29].
The result of a fit without weighting is shown in

Fig. 22(a). The fit parameters are listed in Table VII. It
should be noted that within the uncertainties obtained from
the fit, A ¼ B, while C and χ0 are compatible with zero.
Here, χ0 represents a primordial tilt of the stable spin axis at
the rf Wien filter along the horizontal axis, cx. For the
model ring, one would expect

χ0 ¼ 0 ¼ cx; ð113Þ
a property which is nicely returned by the fit shown in
Fig. 22(a).
In addition, the fit to the simulated data is expected to

return ϕ0¼ jξEDMðd¼ 10−18e cmÞj ¼ 0.3054mrad, given
by Eq. (11), and the fitted result

ϕ0 ¼ ð0.3054� 0.0002Þ mrad ð114Þ
returns this value accurately.

2. Validation of the scale of εEDM

The fit with the elliptic paraboloid, shown in Fig. 22(a),
indicates that the surface is described with A ¼ B. In the

following, the first fit function from Eq. (111) is slightly
altered, yielding

ðεEDMÞ2 ¼ D
F
·

�
ðϕWF

rot − ϕ0Þ2 þ
�

χSol 1rot

2 sin πνð2Þs

þ χ0

�
2
�
þ E;

ð115Þ

where a factor F ¼ 1020 has been introduced to scale the
resonance strength. The second fit now uses weights
derived from the uncertainty of the fitted Ωpy using
Eq. (106). The fit obtained is shown in Fig. 22(b), and
the results are summarized in Table VIII. The agreement
between the theoretical model and the simulated data is
good, the χ2=ndf ¼ 374.4=194 ¼ 1.9.
According to Eq. (A5), the factor in front of the brackets

in Eq. (115) reads

D
F
¼ k¼! ψ2

WF

16π2
; ð116Þ

where the Wien filter rotation angle ψWF from Eq. (34) is
used. Inserting the numerical value of D from the fit
(Table VIII), and taking into account that the results are
in mrad, the ratio

FIG. 22. Fits to the simulated data for the resonance strength ðεEDMÞ2 as a function of ðϕWF
rot ; χ

Sol 1
rot Þ.

TABLE VII. Parameters of the fit shown in Fig. 22(b). The fit
parametrizes the simulated data shown in Fig. 20(a), using
Eq. (115) and F ¼ 1020.

Fit parameter Value

A 25.245� 0.009
B 25.254� 0.009
C −0.002� 0.0016
χ0 ð0.0003� 0.0002Þ mrad
ϕ0 ð0.3054� 0.0002Þ mrad

TABLE VIII. Fit parameters obtained using Eq. (115) on the
simulation data shown in Fig. 22(b), using factor F ¼ 1020.

Fit parameter Value

D 8.941� 0.003
E 0.002� 0.003
χ0 ð−0.0002� 0.0001Þ mrad
ϕ0 ð0.30534� 0.00005Þ mrad
χ2=ndf 1.9 ¼ 374.4=194
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D · 106

F · k
¼ 9.9954 × 10−1 ð117Þ

yields the expected value near unity, which validates the
scaling factor in Eq. (A5).
The second fit yields a similar value for

ϕ0 ¼ ð0.30534� 0.00005Þ mrad

≈ jξEDMðd ¼ 10−18e cmÞj; ð118Þ

compared to the first one, shown in Fig. 22(a), and χ0 andC
are both compatible with zero.

V. CONCLUSIONS AND OUTLOOK

The SOð3Þ matrix formalism used here to describe the
spin rotations on the closed orbit, i.e., the spin dynamics of
the interplay of an rf Wien filter with a machine lattice that
includes solenoids, proved very valuable. The general
features of the deuteron EDM experiment at COSY can
be obtained rather immediately.
The polarization evolution in the ring in the presence of

an rf Wien filter that is operated on a parametric resonance,
in terms of the resonance tune or resonance strength εEDM

is theoretically well understood. This will allow us to
investigate in the future effects of increasingly smaller
magnetic imperfections, either through additional solenoi-
dal fields in the ring, or by transverse magnetic fields via
the rotation of the rf Wien filter around the beam axis.
In the near future, it is planned to incorporate into the

developed matrix formalism also dipole magnet displace-
ment and rotation parameters, available from a recent
survey at COSY. This will allow us to determine the
orientation of the stable spin axis of the machine at the
location of the rf Wien filter, and to extract the EDM from a
measurement of the resonance strengths as a function of
ðϕWF

rot ; χ
Sol 1
rot Þ. In addition, it shall be possible to incorporate

the spin rotations from misplaced and rotated quadrupole
magnets on the closed orbit into the formalism as well. Of
course, the approach taken is no substitute for more
advanced spin-tracking codes, but the results obtained here
can be applied to benchmark those codes.
It should be noted that the JEDI collaboration is

presently applying beam-based alignment techniques to
improve the knowledge about the absolute beam positions
in COSY [15]. Once the orbit corrections based on the
results of the beam-based alignment have been imple-
mented, the approach described here to parametrize the
spin rotations solely on the basis of the closed orbit, will
become even more realistic.
The collaboration devoted a considerable effort to the

experimental optimization of the spin-coherence time
[28,29]. For deuterons at momenta near 970 MeV=c,
spin-coherence times in excess of 1000 s are routinely
achieved nowadays by careful adjustment of the sextupole

magnets in the ring. The collaboration is presently prepar-
ing the corresponding investigations for protons.
An obvious limitation of the analytic treatment presented

here, is the implicit assumption that the beam emittance is
vanishing and correspondingly, the spin-coherence time is
infinitely large. In the near future, we intend to apply more
sophisticated spin-tracking algorithms to better understand
the relation between a finite beam emittance and the
corresponding spin-coherence time, both for deuteron
and proton beams. It remains to be seen, how far one
can develop analytic descriptions to actually model the
spin-coherence time and other spin dynamics aspects of
beams with finite emittance.
A full-fledged analytic treatment of decoherence of the

polarization in a beam bunch due to synchrotron oscil-
lations was reported in [30], and these findings will be
applied to the analysis of the experimental data. Yet another
potential source of decoherence is intrabeam scattering,
which evidently randomizes the synchrotron motion and
thereby the spin phases of the stored particles. Effects from
intrabeam scattering can be readily incorporated in the
formalism exposed in [30].
Recently, in conjunction with the design of the rf Wien

filter [5], an approach based on the polynomial chaos
expansion has been successfully applied to determine a
hierarchy of uncertainties. Such a methodology, in combi-
nation with the spin-tracking approach based on the matrix
formalism outlined here, can be employed to efficiently
generate a hierarchy of uncertainties for the EDM prototype
ring [11], based on the design parameters of the machine.
The employed spin-tracking approach shall be also

applied to study various aspects of the presently applied
spin-tune feedback system, which is used to phase lock the
spin vector to the rf of the Wien filter [23].
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APPENDIX: DEPENDENCE OF THE EDM
RESONANCE STRENGTH ON ϕWF AND χ Sol 1

The functional dependence of a physical rotation of the
Wien filter around the beam axis by ϕWF

rot and of a spin

rotation in static solenoids (see Fig. 4) by χ
Sol1;2
rot on the

resonance strength εEDM [Eq. (106)] is discussed.
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At the location of the polarimeter, only the vertical and
radial components of the beam polarization [SyðtÞ and
SxðtÞ] can be determined. At the rf Wien filter, the
orientation of the stable spin axis is denoted by c⃗, and
in EDM mode the direction of the magnetic field by n⃗WF
[see Eq. (39)]. The in-plane SxðtÞ thus obviously depends
on ½n⃗WF × c⃗�.
In an ideal all-magnetic ring under consideration, the

stable spin axis is close to the vertical direction e⃗y,

c⃗ ¼ cos ξEDM · e⃗y þ sin ξEDM · e⃗x

≈ e⃗y þ ξEDM · e⃗x: ðA1Þ

In EDMmode, the magnetic axis of the rf Wien filter can be
approximated by

n⃗WF ¼ cosϕWF
rot · e⃗y þ sinϕWF

rot · e⃗x

≈ e⃗y þ ϕWF
rot · e⃗x: ðA2Þ

The stable spin axis c⃗ can be manipulated by static
solenoids in the ring, and the drift solenoids S1 and S2 of
the electron coolers (or the Siberian snake instead of S1)
generate the spin kicks χ1 and χ2. When both solenoids S1;2
are turned on, one can write for the stable spin axis

cx ¼ ξEDM þ 1

2
χ2;

cz ¼
1

2 sin πνs
ðχ1 þ χ2 cos πνsÞ: ðA3Þ

In case solenoid S2 is off (χ2 ¼ 0), one obtains

½n⃗WF × c⃗� ¼ ðξEDM − ϕWF
rot Þe⃗x þ

χ1
2 sin πνs

e⃗z: ðA4Þ

Thus the resonance strength squared can be written as a
sum of two independent quadratic functions,

ðϵEDMÞ2 ¼ ψ2
WF

16π2

�
ðξEDM − ϕWF

rot Þ2 þ
�

χ1
2 sin πνs

�
2
�
; ðA5Þ

where ψWF is defined in Eq. (34).
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